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Abstract. Two self-interacting quantum field theories arising from the interaction lagrangian 
are discussed. Proceeding from exact particular solutions of the field equations which 

reduce to the positive and negative frequency solutions of the free field theory for E. = 0, 
the theories are quantized either by requiring (a) the commutator of the positive and negative 
frequency solutions to be independent of I at t = 0 or (b)  the propagator formed from the 
operator solutions of the field equations to be invariant with respect to translations. The 
solutions satisfying (a)  are appropriate for scattering problems extending from t = 0 to 
t = 50 while solutions satisfying (b)  are valid from t = - io to t = io. The solutions satisfy- 
ing (a) become independent of >. for t = 0 but continue to depend on 2. for large times while 
those satisfying (b)  contain I for all times. Both types of solutions satisfy the interacting 
field equations for all times. For times other than zero in case (a)  and for all times in case (b)  
the equal-time commutator of the positive and negative frequency fields contains I .  The 
propagator for case (b)  is calculated and is found to have poles at (2n + l)m, where m is the 
mass of the associated free field and n is an integer. 

1. introduction 

In the study of quantization of self-interacting systems one of the most important 
examples has been the scalar or pseudoscalar field with interaction lagrangian of the 
form A$4. Although the original stimulus for studying this type of system arose in 
connection with renormalization of the perturbation series for nucleons and mesons 
interacting by a Yukawa coupling (Matthews 1950), in recent years the theory, because 
of its relative simplicity, has been the subject of axiomatic and mathematical studies 
independent of perturbation theory (Glimm and Jaffe 1970, Segal 1960, 1964, Streater 
and Wightman 1964). In addition to these, the existence of resonances in multiple 
meson systems is sufficient reason for examining this type of theory. 

The usual perturbation theory approach to this problem assumes the existence of 
in and out fields which are to describe the physical system initially and finally. These 
fields satisfy free field equations. This property is reasonable in a scattering theory 
where one subsystem (target) is isolated at the beginning and end of an experiment from 
the other subsystem (incident beam). I t  becomes more difficult to justify in a field theory 
where even the incident systems are sources of the field and can be expected to interact 
with this field. Of course, the problem of self-interactions in field theory is quite old 
and is a source of difficulties in both classical and quantum field theory. At present, as 
is well known. the most common approach to this problem is to adjust the interaction 
so that infinities in the self-energy arising in perturbation theory are cancelled term by 
term in perturbation theory by self-interactions. This point of view places the self- 
interaction on the same basis as the interaction of one subsystem with another- 
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specifically, the fields at f CO are assumed to  satisfy free field equations and the self- 
interaction is included in the source (current) of the interacting field. 

In this paper we will give some results of studying the quantization of self-interacting 
systems independent of the property described above. While free fields have a place in 
this study they are not limits of the interacting fields for large times. By this we mean 
that the fields always satisfy interacting field equations. This places the self-interaction 
on its most plausible basis. As the coupling constant vanishes (independent of time) 
the operators reduce to the free field operators. (To make a fair appraisal of the re- 
normalization point of view we would have to agree that allowing the self-interaction 
to change the bare mass of a particle into its physical mass also implies that the self- 
interaction is always present. However, in this type of theory it is necessary to assume 
that no subsequent inconsistencies develop in the detailed structure of the theory. 
It is well known that for higher spin systems this assumption is invalid.) 

To summarize, we study self-interactions by solving the differential equations of the 
interacting fields and then quantizing the solutions. 

The outline of this paper is as follows. We will consider throughout the case of a 
neutral scalar field with self-interaction A#3 (in the field equation). In 5 2 one-dimensional 
solutions of the field equations will be quantized, using commutation relations similar 
to the equal-time commutation relations of linear field theories. The resulting operators 
reduce to free field operators as A approaches zero (and also at t = 0). The propagator 
is not invariant with respect to translations and the field operators contain A at t = f E .  

In 0 3 an alternative method of quantization is discussed in 3 + 1 dimensions. The 
propagator in this case is invariant with respect to translations. It also has poles at 
(2n + l )m,  where m is the mass appearing in the field equation and n is an integer. In the 
last section we summarize the results. In appendix 1 details of the solution of the field 
equations are given while the convergence of a propagator is considered in appendix 2. 

2. Commutators specified at t = 0 

The field equation considered here is the well known generalization of the Klein- 
Gordon equation, 

(d,ap+m2)4+A#3 = 0, ( 1 )  
where m is the mass of the particle and A is the coupling constant. We have discussed 
particular solutions of this equation suitable for quantization elsewhere (Burt and Reid 
1972). In this section we will consider the one-dimensional theory given previously. 
In particular we will show that the quantized solutions give rise to propagators which 
are not invariant under translations and are thus not suitable for describing scattering 
problems extending from t = f CO. The solutions are 

1- (2) #(+)( t )  = ~ ( * ) ~ i i m t  ( I + ~ A A $ , * ) ~  e i 2 i m t  
1 

with 

1 
8m2' 

c = -  (3) 

As is evident from inspection these solutions contain the coupling constant for 
large t .  For zero interaction they reduce to solutions of the free field equations. Finally, 
each solution is constructed from positive or negative frequency solutions. 
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As a first method of quantization we require 

[4Y )(O), 4- ’(0)l = 1 * (4) 

This requirement is given in analogy with free field theory and insures that the 
commutator will be identical with the free commutator for zero interaction (to within 
a constant). 

Specifying the commutator enables us to find the coefficients Ai*) in terms of free 
field annihilation and creation operators. One solution is (Burt and Reid 1972) 

n = O  

where a,, are numerical coefficients. A similar result is obtained for A ( - )  with U replaced 
by ut. The commutator of a and ut  is unity. 

Now, we construct the propagator, again by analogy with free field theory, 

P(t ,  t’) = ( o ~ ~ ~ ) ( r ) ~ ~ - ) ( t ’ ) i O ) ~ ( t  - t i )+  (014:“(t’)4:-)(t)1O)e(t‘ - t )  

= ( o i [ # y ( t ) ,  4;- )(t‘)lio)e(t - t ’ )  + (oi[4:+ )(t’) ,  4:- )(t)lio)e(t’ - t ) .  (6) 
With the choice of A ( * )  given by equation ( 5 )  it is easy to see that this propagator is 

not invariant with respect to translations. In order to show this it is necessary to look 
at only one of the terms in equation (6). To second order in A we have 

Mi+ )(% $4- )(f’)I 
2 [4b‘ )(Q, 4b- V)I + 44:‘ ’(t),4b- ’(t” + mb‘ YO, 4:- ’(t’)I 

+ n2[4:‘)(t),  4\-)(t’)] + n2[4:‘)(t), &)(t’)] +n2[4b+)(t), 4i-)(t’)], (7) 

(8) 

where $ y )  is ,#,r)(t) = - c 4 + ) 3  , -3 imt+~:+)~- imf  

with 
Ab+’=  a (9) 

Al+) = calu3. (10) 
The propagator will contain no first order terms, and the only second order term 

arises from the commutator of 4“’ with $J\-). Using equations @)-(lo) this is 

= 6cZ[exp{ -3im(t-t‘)} -al{exp( -3imt +imt’) 

-exp( - imt + 3imt’)) +a: exp{ - im(t - t’)}]. (1 1) 
It is evident that the middle term in equation (11) is not invariant with respect to 

time translations. 
Now, the commutation relations have been expressed in a way that allows us to 

find a solution at t = 0 which is independent of 1. Although the solutions given by 
equations (2)-(5) continue to satisfy the differential equation at t = 0, this method 
singles out t = 0 as a special time. If we start the scattering problem at t = 0 then we 
would not expect the propagator to be invariant under translations. However, even 
in this case the solutions do not reduce to free fields again at t = oc). On the other hand, 
if we restate the commutator and require that the equal-time commutator be independent 
of A for arbitrary times there are no solutions for which A‘*)  are independent of time. 
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However, if A ( * )  are time dependent, the functions # * )  are no longer solutions of the 
differential equation. Finally, if we continue to state the scattering problem as beginning 
at  t = - CO and ending at t = + CO, the solutions given here are unphysical since the 
propagator is not invariant with respect to displacements. 

Thus, we obtain the following from these solutions. If we restate the scattering 
problem to extend from t = 0 to t = CO, we can satisfy canonical commutation relations 
with the solutions given by equations (2)-(5) at t = 0. Subsequently, the equal-time 
commutators are time dependent and also depend on the interaction. Free field 
operators do not appear again at t = CO. 

3. Commutators unspecified 

We now turn to a quantized field theory in four dimensions appropriate to the scattering 
problem extending from t = -CO to t = CO. The field equations have solutions (see 
appendix 1) 

if 
$\*) = $(*)(I +cA$(*Q)-', (12) 

( d , d p +  n2m2)$(*)" = 0. (13) 

$i*) = a(*)(k)  exp( T i i  . :)U- ' I 2  

k . k  = k,k, = k i - k 2  = m2. 

A pair of particular solutions of equations (12H13) is, for a system of volume U, 

(14) 

(15) 

Now, instead of requiring the commutator to be independent of L as in the previous 
section, we will leave it unspecified and instead, assume d * ) ( k )  to be a(k) and at(k) 
respectively of the linear theory. Their commutator is taken to be 

with 
" "  

[W, at(k')l = &,,.ko. (16) 
Thus, we quantize the nonlinear theory by knowing that there are operator-valued 

solutions of equation (13) for which the coefficients satisfy the commutation relations 
given in equation (16). 

Next, weconsider the construction of the propagator corresponding to these solutions. 
We first review the steps in constructing a propagator in the linear theory. 

The first step is to find the solutions of the linear field equation. These have the form 
given in equation (14). The physical interpretation given to the solutions in equation (14) 
is that the quantity (clat(k) exp(ii. :)/<ulO) is the conditional probability amplitude 
that a particle of momentum k is created from the vacuum at the point x and propagates 
to the state described by (cl with momentum k. The total amplitude for a particle to 
be created at x and propagate to the state described by ( € 1  is 
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We will construct the propagator for the nonlinear theory in the same way. That is, 
db-)(x) is interpreted as the operator which creates a system at the point x with quantum 
numbers q. However, q is no longer the momentum of the system. Thus, we assume 
that the self-interacting field has substates which can be labelled by the momenta of 
the associated free field. With this assumption and the solutions given in equations (12) 
and (14H16) the propagator for the self-interacting field is 

P(X* Y) = k, l40 1((ol[di+)(x)3 d~-~(Y)llO)~(xo - Y o )  + (ol[4i+)(Y)3 4 ~ - ~ ~ x ~ l l o ~ ~ ( Y o  - X o N  
k ,q  

cc 
= 1 (2n+ l)!k~”-1(cA/u)2n[exp( -(2n+ 1) i i .  (R-jj))O(xo-yo) 

n = O  k 

+exp{ +(2n+ 1) i i .  (~-j))e(y,-x,,)l 

(2n+1)! = c  (~A/u)~”((2n+ 1)2m2 -V2)”AF(x-y; (2n+ 1)2m2) (19) 
(2n+ 

where we have used the integral representation for the step function 

and also the identity 

f(k)ko exp( f i l  . 2) 
k 

= cf (k) (k2+m2)1’2exp(Ti i .  R ) =  (m2-V2)1’2 Cf(k )exp(T i l .  2). (21) 
k k 

I t  is evident that the propagator given by equation (19) is invariant under translations. 

Now, i t  is also apparent that the equal-time commutator of +r’(x) and 4b-)(y) 
The convergence properties of the series are discussed in appendix 2. 

will depend on the coupling constant, that is, 

which, even for equal times contains i. Furthermore, this quantity is an operator. 
Since the function A,(x-y; (2n+ 1)2m2) enters the complete propagator given in 

equation (19) it is clear that this has poles at (2n+ l)m, where m is the mass of the 
associated free field and n is an integer. If we retain the interpretation that the propagator 
has poles at physical states, we conclude that the field contains particles of mass 
(2n + 1)m. The contribution of these higher mass states is proportional to A*” and thus 
vanishes with A. 

4. Summary 

Two examples of self-interacting quantum field theories have been constructed from 
fields which satisfy the interacting field equations for all times. In the first example, 
by requiring the equal-time commutators of the positive and negative frequency field 
operators to be independent of the coupling constant at t = 0 a set of operators is 
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obtained which is appropriate for describing a scattering problem extending from 
t = 0 to t = x .  The fields contain the coupling constant for large times. In the second 
example the solutions to the interacting field equations are constructed from solutions 
of the free field equations in a way which insures that the propagator will be invariant 
with respect to translations. These solutions also contain the coupling constant E. 
at large times and are appropriate to describe a scattering problem extending from 
t = - CO to t = + CO. The equal-time commutators depend on 2. 

In the second example the requirement of translational invariance on the propagator 
essentially determines the properties of the coefficients in the solutions of the field 
equations. The result is that the equal-time commutator of the positive and negative 
frequency operators can no longer be specified independently. While the propagator 
does not have the mathematical properties in the interacting theory that it does in the 
free field theory, that is, it is not a Green function of the field equation-in fact, it 
does not even satisfy the field equation-its physical role remains the same. I t  is used 
to calculate transition matrix elements and consequently, is closely related to observable 
quantities. Therefore, the requirement of translational invariance seems well motivated. 

Further, in the second example, the propagator has poles at (2n + l)m, so the theory 
describes systems composed of more than one particle. (However, the position of the 
poles is independent of the coupling constant. This is similar to the behaviour of the 
scattering amplitude when a new multiparticle channel is opened. I t  is possible that the 
particular solutions of the field equations used in calculating the propagator distort the 
general solution, with the net effect of the distortion being that a branch cut in the 
propagator appears as a pole.) This complexity in the field is also reasonable if we 
expect the field to reflect the complexity of observed physical systems such as hadrons. 

Finally, the point of view adopted here has emphasized the role of the field equations 
and their solutions independent of perturbation theory, rather than the existence of 
the energy-momentum tensor. Consequently, the connection between this point of 
view and the canonical formalism, with its emphasis on the hamiltonian, is obscure. 
This question remains to be investigated, although with the explicit solutions given 
here we expect that a better understanding of these two points of view is possible. 
Another question which can be examined directly with these explicit solutions is the 
assumption that the bare mass of a particle can be corrected to its physical value due 
to a self-interaction. These, and other questions, will be considered subsequently. 

Appendix 1 

In this appendix we consider the details of the solutions to equation (1) given in equations 
(12)-(13). This differential equation is a special case of some nonlinear equations 
discussed elsewhere (Reid and Burt 1973). The solutions are constructed in terms of 
solutions of the related linear differential equation (called the base equation) 

( d p + d ) $  = 0. (Al . l )  

As is well known, this equation has both c number and operator solutions which 
may be characterized as positive or negative frequency solutions, for example, 

(A1.2) 
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Two particular solutions of equation (1). constructed from either the positive or negative 
frequency solutions of (Al . l ) ,  are 

and 
1 

8m2’  
c =  -- 

(A1.4) 

(A1.5) 

(A1.6) 

Condition (A1.5) is the condition applied to operator solutions of (A l . l )  in quantum 

These results may be verified by direct substitution. Differentiating (A1.3), using 
field theory. 

(A l . l )  and (A1.4HA1.6) we find 
a,+:*) = ap$(*)(l +ciq,(*)z)- 1 -2c2a,$(f)$(*)2(1 + C ~ , p f ) 2 ) - 2  

= -dp$(f)(1 +cA$(f)z)-l +2a,$‘*’(l + c h p Z ) - 2  (A1.7) 
and 

a,a”~f’ = - a,ap$(*) (  1 + c h p * q -  1 + 2ciap$(*)ap$(*)$(f)(1+ c h p y  

+ 28,8fl$(*)( 1 + C L $ ( * ) ~ ) -  * - 8c ,? .ap$( * )ap$( * )~ ( * ) (  1 + CA$(*)’)- 
= - mz$i* - A$$,* )3. 

Clearly, rearranging (A1.8) gives equation (1). 

(A1.8) 

I t  is also easy to see that (A1.4) leads to (13) directly. We have using (A l . l )  

a,y$(* )n = ( n  - l)na,$( f )a,$(* )$( f )n - 2 + n a p a p $ ( f ) $ ( f ) n -  1 = -n2m2$(f)n , ( ~ 1 . 9 )  

for any real n. 
The remaining question is to show that the forms given in (A1.3HA1.6) are particular 

solutions and not singular solutions. This proof is elementary for $if) which are 
functions of koxo - k . x and will not be given here (see Reid and Burt 1973). 

Appendix 2 

The functions appearing in the propagator given in equation (10) are the usual singular 
functions appearing in quantum field theory. However, we must also consider separately 
the convergence of the series in equation (10). For this purpose we will use explicit 
representations of the function A F ( x ;  m Z )  (Bjorken and DreH 1965 appendix C). These 
are 

where 
1 z > o  

- 1  z e 0. 
42) ={ (A2.2) 
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The functions A, and A may be written 

t > r  

A(x) = - - - r < t < r  

- Jo(m(t2 - r2)'12) 
4nr ar  

t < - r  

and 
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(A2.3) 

(A2.4) 

where J , ,  Yo and K O  are cylinder functions (Watson 1944). From these results it is 
clear that for time-like intervals one has 

{(2n+1)2m2-V2)niAF(x;(2n+1)2m2) 

= {(2n+ 1)2m2-V2}"(8nr)- '(d/ar)HL2)((2n+ 1)m(t2-r2)'l2) = P,, (A2.5) 

where H ( 2 )  is the second Hankel function, and for space-like intervals 

9, = {(2n+ 1)2m2 -V2;"(8nr)- '(a/ar)K0((2n+ l)m(r2 -t2)'/'). (A2.6) 

Using these results the convergence properties of the series in equation (IO) can 

First, define a as 
be readily established. We will illustrate the argument for space-like intervals. 

0 = (r2 - t2) ' /2.  (A2.7) 

Then, the nth term in the series is (P,, = {(2n)!/(2n + 1)2n+'}(~A/u)2n9n) 

(A2.8) 

where we have used (A2.7) and the result that there is no angular dependence in KO. 
In order to avoid the light cone singularity in P,, we will examine this expression at 
points far from the light cone. A more complete argument will be given elsewhere 
(Burt 1973). For large a we have 

K0((2n + 1)mo) N [n/{ 2(2n + l)ma}] ' I 2  exp{ - (2n + 1)mo). (A2.9) 

Performing the differentiations indicated in (A2.8) we find, for large n, that the differ- 
ential operator may be replaced by the first and third terms, giving the approximate 
result 

(2n) ! 
( -  z2), e-mrr (2n+ 5) li2 

P,, = (A2.10) 

where 

(A2.11) 
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Now, it is evident that this series diverges rapidly for fixed z. Furthermore, the source 
of the divergence is apparent. The presence of the term (Ol[a"(k), u"'(k')lO) in the series 
is the scalar product of two states, at"'(k)lO) and (Ola"(k) without the normalization 
factors ( n ' ! ) - l l 2  and In the linear theory we are free to insert these factors in 
the construction of the Hilbert space. However, in the nonlinear theory these operators 
arise from the expansion of the operator (1 + c;IA2)- in powers of I and consequently 
contain the numerical coefficients appropriate to this series. 
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